Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
نویسندگان
چکیده
منابع مشابه
Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented by their nearby neighbors, and are modeled as a patch. Adaptive searching windows are calculated...
متن کاملBM3D Image Denoising with Shape-Adaptive Principal Component Analysis
We propose an image denoising method that exploits nonlocal image modeling, principal component analysis (PCA), and local shape-adaptive anisotropic estimation. The nonlocal modeling is exploited by grouping similar image patches in 3-D groups. The denoising is performed by shrinkage of the spectrum of a 3-D transform applied on such groups. The effectiveness of the shrinkage depends on the ab...
متن کاملPrincipal Component Analysis Image Denoising Using Local Pixel Grouping
In recent years various image processing techniques have been developed. These include medical, satellite, space, transmission and radar etc. But noise in image effect all applications. So it is necessary to remove noise from image. There are various methods and techniques to remove noise from images. Wavelet transform (WT) is effective in noise removal but it has some limitations that are over...
متن کاملAdaptively Tuned Iterative Low Dose CT Image Denoising
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the p...
متن کاملJoint image denoising using adaptive principal component analysis and self-similarity
The nonlocal means (NLM) has attracted enormous interest in image denoising problem in recent years. In this paper, we propose an efficient joint denoising algorithm based on adaptive principal component analysis (PCA) and self-similarity that improves the predictability of pixel intensities in reconstructed images. The proposed algorithm consists of two successive steps without iteration: the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2015
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0126914